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ABSTRACT
In this article, estimation problems for the Burr X distribution under
a progressive-stress accelerated life test with progressive type-II cen-
soring are studied. The stress is assumed to be a linearly increasing
function of time. The inverse power law and the cumulative expo-
sure model are considered. The classical and Bayesian estimations
for themodel parameters are obtainedby usingmaximum likelihood
method and Markov chain Monte Carlo technique,respectively. The
asymptotic confidence intervals are constructed and highest pos-
terior density intervals are also established. A simulation study is
conducted to investigate theperformanceof theproposedpoint and
interval estimations. Finally, a real data set is analysed for illustration.
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1. Introduction

In recent years, the life testing and reliability experiments of products under normal operat-
ing conditions become a tedious job because of the increased average lifetimes of products
due to the various technological advancements. Testing such highly reliable products under
normal operating condition affects the overall cost per product. To deal with such situation
and to get the failure times of products under some life testing experiment, in an affordable
period of time, life testing experiments are conducted under higher than normal operat-
ing stress. The data obtained under such high-stress conditions are extrapolated to normal
operating condition using some appropriate model. The higher stress loadings in accel-
erated life test (ALT) can be applied in different ways and the three well-known methods
are constant-stress, step-stress, and progressive-stress. In constant-stress ALT, the products
are tested under a constant-stress level till the test terminates where the test termination
can be decided as per requirement such as by fixing the number of failures or by fixing the
testing period. There are several researchers investigated constant-stress ALT, for reference
one may see Kim and Bai [1], Watkins and John [2], Jaheen et al. [3], Guan et al. [4], and
Mohie El-Din et al. [5,6]. In step-stress ALT, the products are tested with increasing stress
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levels step by step by fixing the stress change criteria either by fixing the stress changing
time or by fixing the number of failures. The study of step-stress ALT is considered by sev-
eral authors such asMiller and Nelson [7], Bai et al. [8], Gouno et al. [9], and Balakrishnan
et al. [10]. Some recent articles, for example, by Mohie El-Din et al. [11,12], Zhang and Shi
[13], Mohie El-Din et al. [14], Abdelmonem and Jaheen [15], and Guan and Tang [16] also
considered step-stress ALT for their studies. Furthermore, in progressive-stress ALT, the
products are placed in an environment where the stress increases continuously with time.
If the stress increases linearly, we call such an experiment as a ramp-stress experiment.
Authors such as Yin and Sheng [17], Bai et al. [18], Wang and Fei [19], Abdel-Hamid and
AL-Hussaini [20,21], AL-Hussaini et al. [22], Abdel-Hamid and Abushal [23], and Mohie
El-Din et al. [24] considered progressive-stress ALT for their studies.

It is observed that it is not possible or sometime not desirable to obtain the failure times
of all the test units placed on a life testing experiment because of the associated costs such
as high cost of per test units or limitations on experimental time, etc. Thus, such situations
are handled by removal of test units before the actual failure occurs and are termed as cen-
soring schemes. Since the removal of these test units can be done in various possible ways,
these are further known as various types of censoring scheme. The two widely used cen-
soring schemes are the type-I and type-II censoring schemes. The discussions of these two
censoring schemes can be found in many articles. The main drawback of these schemes
is that the removal of test units is allowed only after the termination of the experiment.
Thus, a different censoring scheme known as progressive censoring was introduced in the
literature which allows the removal of the test units during the life experiment. Progressive
type-II censoring can be described as follows. Suppose that n test units are placed on a life
experiment and m (m ≤ n) is prefixed. At the occurrence of the first failure, we withdraw
R1 surviving units randomly. At the occurrence of the second failure, we withdraw R2 sur-
viving units randomly, and so on. Finally, at the occurrence of the mth failure, remaining
n − m − (R1 + · · · + Rm−1) surviving units are all withdrawn from the experiment.

In this paper, we consider the progressive-stress ALT with progressive type-II censor-
ing. The lifetime of the test unit is assumed to follow the Burr X distribution. Our aim is
to discuss the estimation problems of model parameters based on classical and Bayesian
frameworks. The rest of this paper is organized as follows. In Section 2, the considered
model is described in brief by describing various assumptions for the progressive-stress
ALT. In Section 3, the maximum likelihood estimates (MLEs) are derived. In Section 4,
the Bayes estimates are obtained. The asymptotic confidence interval and highest poste-
rior density (HPD) interval are constructed in Section 5. For illustration of the discussed
methods, a real data set is analysed in Section 6. In Section 7, a Monte Carlo simulation is
conducted to investigate the performance of the proposed methods. At last, in Section 8,
some concluding remarks are made.

2. Model description

Among the various family of Burr distributions introduced by Burr [25], Burr X and Burr
XII are the two which got the most attention for modelling data in various fields of study.
Burr X distribution which is also known as generalized Rayleigh distribution has been
considered widely for modelling strength and lifetime data by many authors under com-
plete as well as censored data. It shows many common properties to the distributions such
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as Weibull, generalized exponential, and gamma. The cumulative distribution function
(CDF) of a two-parameter Burr X distribution is given as

F(t) = (1 − e−(γ t)2)α , t > 0,

and the corresponding probability density function (PDF) is given by

f (t) = 2αγ 2t e−(γ t)2(1−e−(γ t)2)α−1, t > 0,

where α > 0 is the shape parameter and γ > 0 is the scale parameter. Some of the prop-
erties of Burr X distribution are studied by Raqab and Kundu [26]. They observed that the
density function of Burr X distribution is decreasing for α ≤ 1/2, and for α > 1/2, it is a
right-skewed unimodal function. Similarly, the failure rate function of Burr X distribution
is increasing for α ≤ 1/2, and is bathtub shaped for α > 1/2.

Consider a progressive-stress ALT. We have a total of n units available for the life
test. Let S1(t) < · · · < Sd(t) be stress levels which are functions of time t. Suppose that,
at stress level Si(t), ni units are placed on a progressively type-II censored life test with
censoring scheme (Ri1, . . . ,Rimi), i = 1, 2, . . . , d, where

∑d
i=1 ni = n. That is, as the first

failure ti1:mi:ni occurs, Ri1 live units are randomly selected and removed. As the second
failure ti2:mi:ni occurs, Ri2 of the surviving units are removed, and so on. This experi-
ment terminates at the time when themith failure timi:mi:ni is observed and the remaining
ni − mi − (Ri1 + · · · + Rimi) surviving units are all removed. Thus, the observed pro-
gressively censored data under the progressive-stress Si(t) are ti1:mi:ni < ti2:mi:ni < · · · <

timi:mi:ni , i = 1, 2, . . . , d.
The following assumptions are made for the progressive-stress ALT framework:

(1) For any stress setting, the lifetime distribution of the test unit has a Burr X distribution.
(2) The progressive-stress S(t) is a linearly increasing function of time t, i.e. S(t) = vt,

v>0.
(3) The relationship between life characteristic γ and the stress level S(t) is described by

inverse power law, i.e. γ (t) = 1/(a[S(t)]b), where a>0 and b>0 are parameters to
be estimated.

(4) The linear cumulative exposure model is considered to deal with the effect of stress
change from one stress level to another, for more details, see Nelson [27].

From the assumption of the linear cumulative exposure model, the CDF of a test unit
under progressive-stress Si(t) can be written as

Gi(t) = Fi(�(t)), i = 1, 2, . . . , d,

where�(t) = ∫ t
0 1/γi(u) du = avbi t

b+1/(b + 1) and Fi(·) is theCDFof Burr X distribution
under progressive-stress Si(t) with scale parameter taken as 1. Then, we have

Gi(t) =
⎡
⎣1 − exp

⎧⎨
⎩−

(
avbi t

b+1

b + 1

)2
⎫⎬
⎭
⎤
⎦

α

, t > 0, (1)
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and the corresponding PDF is given by

gi(t) = 2α
(
avbi
)2 t2b+1

b + 1

× exp

⎧⎨
⎩−

(
avbi t

b+1

b + 1

)2
⎫⎬
⎭
⎡
⎣1 − exp

⎧⎨
⎩−

(
avbi t

b+1

b + 1

)2
⎫⎬
⎭
⎤
⎦

α−1

, t > 0. (2)

3. Maximum likelihood estimation

In this section, the MLEs of parameters a, b, and α are obtained based on progressively
type-II censored data under progressive-stress ALT. Let tij:mi:ni be the observed failure
times obtained from a progressively type-II censored test with censoring scheme Rij under
progressive-stress level Si(t), i = 1, . . . , d and j = 1, . . . ,mi. For simplicity of notation, we
use tij instead of tij:mi:ni throughout the paper. From Balakrishnan and Aggarwala [28], the
likelihood function can be written as

L(a, b,α) ∝
d∏

i=1

mi∏
j=1

gi(tij)[1 − Gi(tij)]Rij .

Then, using (1) and (2), we can obtain the likelihood function for our model as

L(a, b,α) ∝
d∏

i=1

mi∏
j=1

2α(avi)2t2b+1
ij

b + 1
e−(avbi t

b+1
ij /(b+1))2

(1−e−(avibtb+1
ij /(b+1))2

)α−1

× (1 − (1 − e−(avbi t
b+1
ij /(b+1))2

)α)Rij .

Then, the log-likelihood function can be written as

l(a, b,α) ∝ (logα + 2 log a)
d∑

i=1
mi + 2d

d∑
i=1

mi log vi + (2b + 1)
d∑

i=1

mi∑
j=1

log tij

−
d∑

i=1

mi∑
j=1

η(tij) + (α − 1)
d∑

i=1

mi∑
j=1

log(1 − η(tij))

+
d∑

i=1

mi∑
j=1

Rij log(1 − (1 − η(tij))α),

where η(tij) = (avbi t
b+1
ij /(b + 1))2. The likelihood equations for the parameters a, b and α

are, respectively, given by

∂ l
∂a

= 2
a

d∑
i=1

mi − 2a
(b + 1)2

d∑
i=1

mi∑
j=1

(vbi t
b+1
ij )2 + 2a(α − 1)

(b + 1)2

d∑
i=1

mi∑
j=1

(vbi t
b+1
ij )2 e−η(tij)

1 − e−η(tij)
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− 2aα
(b + 1)2

d∑
i=1

mi∑
j=1

Rij
(vbi t

b+1
ij )2 e−η(tij)(1 − e−η(tij))α−1(

1 − (1 − e−η(tij))α
) ,

∂ l
∂b

= − 1
b + 1

d∑
i=1

mi + 2
d∑

i=1
mi log vi + 2

d∑
i=1

mi∑
j=1

log tij

− 2
d∑

i=1

mi∑
j=1

η(tij)
(
log vi + log tij − 1

b + 1

)

+ 2(α − 1)
d∑

i=1

mi∑
j=1

η(tij) e−η(tij)

1 − e−η(tij)

(
log vi + log tij − 1

b + 1

)

− 2α
d∑

i=1

mi∑
j=1

η(tij) e−η(tij)(1 − e−η(tij))α−1

(1 − (1 − e−η(tij))α)

(
log vi + log tij − 1

b + 1

)
,

and

∂ l
∂α

= 1
α

d∑
i=1

mi +
d∑

i=1

mi∑
j=1

log(1 − e−η(tij)) −
d∑

i=1

mi∑
j=1

(1 − e−η(tij))α log(1 − e−η(tij))(
1 − (1 − e−η(tij))α

) .

These likelihood equations can be solved to obtain the required MLEs of the parameters
a, b, and α. Since these equations are highly nonlinear and solving them analytically is
difficult and unfeasible, some numerical techniques such as the Newton–Raphsonmethod
or a quasi-Newton method (e.g. [29]) have to be used for solving these equations.

4. Bayesian estimation

In this section, the Bayes estimates of model parameters a, b, and α are obtained under
squared error loss function. It is assumed that the parameters a and b have non-informative
priors and α has a gamma prior with hyper-parameters (p, q). That is, the prior distribu-
tions of a, b, and α are given as follows:

π1(a) ∝ 1
a
, a > 0, π2(b) ∝ 1

b
, b > 0,

and

π3(α) ∝ αp−1 e−α/q, α > 0, p, q > 0.

We further assume that a, b, and α are independent. Then, the joint prior PDF of a, b and
α is given by

π(a, b,α) ∝ αp−1

ab
e−α/q, a > 0, b > 0,α > 0.

Thus, the joint posterior density of a, b, and α given t = (t11, . . . , t1m1 , . . . , td1, . . . , tdmd)

can be obtained as

π(a, b,α | t) ∝ L(a, b,α)π(a, b,α)
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∝ αp−1+∑d
i=1 mia−1+2

∑d
i=1 mi e−α/q (b + 1)−

∑d
i=1 mi

b

×
d∏

i=1

mi∏
j=1

(vbi t
b+1
ij )2 e−η(tij)(1 − e−η(tij))α−1(1 − (1−e−η(tij))α)Rij .

Under squared error loss function, the Bayes estimate of a parameter is equal to its posterior
mean. Since it is difficult to find the analytical Bayes estimates for these parameters a, b,
and α, we will use theMarkov chainMonte Carlo (MCMC) technique to obtain the desired
estimates.

4.1. MCMCmethod

To obtain the Bayes estimates of the parameters a, b, and α under the progressive-stress
ALT, samples are generated from the posterior distribution. The conditional posterior
distributions for the model parameters a, b, and α are, respectively, given by

π(a | b,α, t) = a−1+2
∑d

i=1 mi

d∏
i=1

mi∏
j=1

e−η(tij)(1−e−η(tij))α−1(1 − (1 − e−η(tij))α)Rij ,

π(b | a,α, t) = (b + 1)−
∑d

i=1 mi

b

d∏
i=1

mi∏
j=1

v2bi t2b+1
ij e−η(tij)(1 − e−η(tij))α−1

× (1 − (1 − e−η(tij))α)Rij ,

and

π(α | a, b, t) = αp−1+∑d
i=1 mie−α/q

d∏
i=1

mi∏
j=1

(1 − e−η(tij))α−1(1 − (1−e−η(tij))α)Rij .

Since the conditional posterior distributions of the parameters a, b, and α are not reducible
into the forms of some well-known distributions, we use Metropolis–Hastings algorithm
proposed by Metropolis et al. [30] and Hastings [31] to generate posterior samples. If the
conditional posterior distributions of the parameters are unimodal and are roughly sym-
metric, then these can be approximated by normal distribution. Figures 1–3 show that the
conditional distributions of a, b, and α are unimodal and very much symmetric by visual
inspection. Therefore, to generate random samples from these conditional distributions,
we use the following steps fromMetropolis–Hastings algorithm:

Figure 1. The posterior density of a (left), b (middle), and α (right) for d = 2.
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Figure 2. The posterior density of a (left), b (middle), and α (right) for d = 3.

Figure 3. The posterior density of a (left), b (middle) and α (right) for d = 4.

Step 1: Set initial guesses for the parameters (a, b,α) as (a0, b0,α0).
Step 2: Set i = 1.
Step 3: Generate a ∼ N(ai−1, σ11), b ∼ N(bi−1, σ22), and α ∼ N(αi−1, σ33), where σii

denotes the (i, i)th entry of the variance–covariance matrix �.
Step 4: Compute P = π(ai, bi,αi | t)/π(ai−1, bi−1,αi−1 | t).
Step 5: Accept (ai, bi,αi) with probability min{1,P}.
Step 6: Repeat Steps Step 3–5 B times to obtain B number of samples for the parameters

(a, b,α).

Finally, remove the first B0 samples to discard the possible dependency on the initial
guesses to obtain the required approximate estimates under the squared error loss function
as follows:

â∗ = 1
B′

B′∑
j=1

aj, b̂∗ = 1
B′

B′∑
j=1

bj, and α̂∗ = 1
B′

B′∑
j=1

αj,

where B′ = B − B0 and B0 is also known as the number of burn-in samples.

5. Interval estimations

In this section, we consider the construction of asymptotic confidence and the HPD
intervals for the parameters a, b, and α.

5.1. Asymptotic confidence interval

Here, we obtain the asymptotic confidence interval by using the asymptotic normality
property of MLEs of the parameters a, b, and α. It is well known that the MLEs (â, b̂, α̂)

is asymptotically normal with mean vector (a, b,α) and variance–covariance matrix �.
Hence, the 100(1 − γ )% asymptotic confidence intervals for parameters (θ1, θ2, θ3) =
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(a, b,α) are given as

(θ̂i − z1−γ /2
√

σii , θ̂i + z1−γ /2
√

σii), i = 1, 2, 3,

where σii is the (i, i)th element of the variance–covariance matrix �.

5.2. Highest posterior density interval

In this subsection, the construction of HPD interval (L,U) is considered for a random
quantity θ which is defined as

p(L ≤ θ ≤ U) =
∫ U

L
π∗(θ | t) dθ = 1 − γ .

To obtain the HPD intervals for the parameters (a, b,α), we can use the posterior samples
obtained in the Section 4 and follow the method discussed by Chen and Shao [32].

6. Illustrative example

In the section, we analyse a real data set reported in Stone [33] (also see, Lawless [34])
for illustration of the methods discussed in this paper. The report by Stone [33] gave the
lifetimes of specimens of solid epoxy electrical-insulation studied under an accelerated
voltage life test with three levels of voltage: 52.5, 55.0 and 57.5 kV. The obtained failure
times with their voltage levels are tabulated in Table 1.

The failure times are given in minutes and for computational relevance the data is
divided by 1440 to convert the unit of the data into days. To check the goodness-of-fit
of the data to Burr X distribution, the Kolmogorov–Smirnov (K-S) distance as well as p-
values are obtained separately for the data obtained under the three voltage levels and are
tabulated in the Table 2. It is observed that the p-values for the data under the three ramp-
stress levels are all greater than 0.05 implying that the data sets show good fit to Burr X
distribution.

We obtain the MLEs and also the Bayes estimates under non-informative prior setup
for the parameters a, b, and α and are obtained as (0.2726, 0.1689, 0.2759) and (0.351302,
0.1515, 0.3148), respectively. Further, constructions of 95% asymptotic and HPD inter-
vals are considered. The asymptotic confidence intervals for the parameters a, b, and
α are obtained as (0.2106, 0.3345), (0.1307, 0.2071), and (0.1984, 0.3536), respectively.

Table 1. Failure times of epoxy electrical-insulation specimens at various
voltage levels.

Voltage (kV) Failure times (min)

52.5 4690, 740, 1010, 1190, 2450, 1390, 350, 6095, 3000, 1458, 6200∗ ,
550, 1690, 745, 1225, 1480, 245, 600, 246, 1805

55.0 258, 114, 312, 772, 498, 162, 444, 1464, 132, 1740∗ , 1266, 300, 2440∗ ,
520, 1240, 2600∗ , 222, 144, 745, 396

57.5 510, 1000∗ , 252, 408, 528, 690, 900∗ , 714, 348, 546, 174, 696, 294,
234, 288, 444, 390, 168, 558, 288

∗Denote censoring times of the specimens.
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The HPD intervals for a, b, and α are obtained as (0.3322, 0.3742), (0.1374, 0.1681), and
(0.2839, 0.3590), respectively. It is observed that the Bayes estimates are better than MLEs
in terms of associated risk. The HPD intervals are better than asymptotic confidence
intervals in terms of interval lengths.

Furthermore, the MLEs of the scale parameter σ under normal operating condition
with the design stress (voltage) S0 = 50 kV is obtained as γ̂ = 1/(â[S0]b̂) = 1.8946. Using
the MLEs α̂ and γ̂ , the MLEs of failure rate, reliability function and mean time to failure
(MTTF) can also be obtained under normal operating condition.

7. Simulation study

For investigating the performance of the methods discussed in this paper, a Monte Carlo
simulation is conducted. TheMLEs and the Bayes estimates are compared in terms of their
MSEs. The asymptotic confidence interval (ACI) and HPD interval are compared in terms
of average interval lengths and coverage probabilities. The simulation study is conducted
by designing three different progressive-stress ALTs. The first is a simple ramp-stress ALT
with only 2 stress levels (d = 2), the second a multiple ramp-stress ALT with 3 stress levels
(d = 3), and the third amultiple ramp-stress ALTwith 4 stress levels (d = 4).We consider
three censoring schemes as follows:

CS1: Rij =
{
ni − mi, j = 1,
0, otherwise,

CS2: Rij =
{
1, j = 1, . . . , ni − mi,
0, otherwise,

CS3: Rij =
{
2mi − ni + j, j = 1, . . . , ni − mi,
0, otherwise.

The true values of parameters a, b, and α are assumed to be 0.75, 0.5, and 0.95, respectively.
For Bayesian estimation, we set hyper-parameters to be p = 5 and q = 5.263158. For the
first ramp-stressALT,we set ramp-stresses as v1 = 2 and v2 = 4; for the second ramp-stress
ALT,we set ramp-stresses as v1 = 2, v2 = 3, and v3 = 4; and for the third ramp-stressALTs,
the ramp-stresses are set as v1 = 2, v2 = 2.5, v3 = 3, and v4 = 4. The results obtained in
the simulation are presented in the Tables 3–5. All the results are based on 1000 simulation
samples.

It can be observed that, for all the three ramp-stress ALT designs, the MSEs for param-
eters using the Bayes method are smaller than those using maximum likelihood method
except for a few cases. The interval lengths of HPD intervals are smaller than those of

Table 2. The K-S distance and the p-values.

Voltage level 52.5 kV 55.0 kV 57.5 kV

K-S distance 0.21733 0.20447 0.12199
p-value 0.26110 0.25450 0.96201
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Table 3. Average estimates with MSEs (in parenthesis) and average interval lengths with coverage
probabilities (in parenthesis) for simple ramp-stress ALT (d = 2).

Point estimate Interval length

ni mi CS θ MLE Bayes ACI HPD

ni =
{
15, i = 1
20, i = 2

mi =
{
10, i = 1
15, i = 2

1 a 0.5686428 0.728257 0.128548 0.054039
(0.04167) (0.00311 ) (0.967) (0.988)

b 0.707544 0.243851 0.510219 0.341708
(0.08451) (0.11417) (0.991) (0.998)

α 1.184469 0.962667 0.123959 0.049937
(0.16425) (0.00213) (0.958) (0.972)

2 a 0.656560 0.730760 0.142887 0.069862
(0.01368) (0.00367) (0.960) (0.975)

b 0.660162 0.261288 0.581764 0.461087
(0.03387) (0.11102) (0.986) (0.991)

α 1.397855 0.968965 0.143346 0.054342
(0.31472) (0.00370) (0.899) (0.953)

3 a 0.785169 0.769672 0.167373 0.101260
(0.01206) (0.00628) (0.966) (0.972)

b 0.689683 0.465112 0.600910 0.581058
(0.05471) (0.07019) (0.978) (0.983)

α 1.240655 0.959870 0.123356 0.056087
(0.16792) (0.00228) (0.961) (0.970)

ni =
{
20, i = 1
30, i = 2

mi =
{
16, i = 1
25, i = 2

1 a 0.555531 0.742707 0.123959 0.062169
(0.04077) (0.00282) (0.948) (0.957)

b 0.826988 0.397588 0.314775 0.304089
(0.11488) (0.03997) (0.938) 0.963

α 1.045095 0.962229 0.123959 0.061185
(0.04910) (0.00372) (0.964) (0.967)

2 a 0.557517 0.747931 0.123615 0.063008
(0.04207) (0.00280) (0.955) (0.977)

b 0.815429 0.370585 0.311442 0.301191
(0.10678) (0.04427) (0.979) (0.982)

α 1.005728 0.963509 0.141579 0.078726
(0.02425) (0.00424) (0.963) (0.971)

3 a 0.698664 0.773995 0.141967 0.079108
(0.00882) (0.00325) (0.956) (0.974)

b 0.778876 0.521607 0.338361 0.340890
(0.09369) (0.04175) (0.979) (0.981)

α 0.995957 0.945809 0.139550 0.069287
(0.01249) (0.00325) (0.957) (0.968)

ni =
{
40, i = 1
50, i = 2

mi =
{
30, i = 1
35, i = 2

1 a 0.563077 0.721477 0.125281 0.062860
(0.03885) (0.00327) (0.973) (0.953)

b 0.783415 0.394168 0.280779 0.222065
(0.10257) (0.04746) (0.969) (0.974)

α 1.143049 0.983518 0.123959 0.063125
(0.13660) (0.00340) (0.963) (0.959)

2 a 0.594139 0.721040 0.129540 0.068625
(0.02721) (0.00500) (0.946) (0.955)

b 0.747829 0.391797 0.290667 0.249161
(0.06784) (0.03117) (0.978) (0.984)

α 1.189172 0.982197 0.184072 0.091023
(0.07672) (0.01301) (0.947) (0.939)

3 a 0.752345 0.769979 0.131654 0.072651
(0.00445) (0.00327) (0.961) (0.972)

b 0.740425 0.534372 0.308323 0.295047
(0.06833) (0.03025) (0.974) (0.986)

α 1.116402 0.950360 0.123959 0.065471
(0.04392) (0.00277) (0.953) (0.961)
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Table 4. Average estimates with MSEs (in parenthesis) and average interval lengths with cover-
age probabilities (in parenthesis) for multiple ramp-stress ALT (d = 3).

Point estimate Interval length

ni mi CS θ MLE Bayes ACI HPD

ni =

⎧⎪⎨
⎪⎩
15, i = 1
10, i = 2
10, i = 3

mi =

⎧⎪⎨
⎪⎩
12, i = 1
7, i = 2
6, i = 3

1 a 0.587664 0.728013 0.127143 0.055664
(0.03328) (0.00349) (0.966) (0.971)

b 0.730694 0.233964 0.484887 0.364939
(0.07891) (0.12703) (0.972) (0.985)

α 1.228186 0.970446 0.126917 0.054177
(0.19051) (0.00510) (0.938) (0.969)

2 a 0.627356 0.739907 0.128707 0.056902
(0.02076) (0.00302) (0.938) (0.953)

b 0.719056 0.240543 0.505154 0.431871
(0.06062) (0.11649) (0.974) (0.983)

α 1.233161 0.953197 0.123959 0.049405
(0.13607) (0.00194) (0.962) (0.981)

3 a 0.771628 0.778156 0.168108 0.100417
(0.01396) (0.00801) (0.955) (0.948)

b 0.713134 0.376004 0.518257 0.605123
(0.06882) (0.08762) (0.982) (0.988)

α 1.063044 0.957370 0.123132 0.055461
(0.03881) (0.00222) (0.963) (0.974)

ni =

⎧⎪⎨
⎪⎩
20, i = 1
15, i = 2
15, i = 3

mi =

⎧⎪⎨
⎪⎩
15, i = 1
13, i = 2
13, i = 3

1 a 0.562749 0.732683 0.129803 0.065229
(0.04005) (0.00315) (0.961) (0.970)

b 0.820774 0.413726 0.333031 0.308172
(0.11923) (0.04423) (0.991) (0.994)

α 1.015684 0.966450 0.148844 0.073812
(0.04782) (0.00467) (0.958) (0.972)

2 a 0.565982 0.741043 0.123772 0.062982
(0.03794) (0.00213) (0.971) (0.977)

b 0.818243 0.374838 0.327227 0.307380
(0.10717) (0.05009) (0.980) (0.992)

α 1.022265 0.969040 0.125978 0.066176
(0.02400) (0.00319) (0.973) (0.967)

3 a 0.692774 0.757686 0.124121 0.063525
(0.00754) (0.00220) (0.966) (0.972)

b 0.812255 0.547536 0.343732 0.352176
(0.10417) (0.03622) (0.997) (0.993)

α 0.978731 0.943573 0.123959 0.060432
(0.01277) (0.00287) (0.965) (0.966)

ni =

⎧⎪⎨
⎪⎩
35, i = 1
30, i = 2
25, i = 3

mi =

⎧⎪⎨
⎪⎩
30, i = 1
20, i = 2
15, i = 3

1 a 0.567882 0.737851 0.122617 0.055957
(0.03865) (0.00260) (0.957) (0.971)

b 0.759067 0.296863 0.290312 0.217999
(0.09098) (0.07547) (0.984) (0.979)

α 1.170235 0.984202 0.144478 0.074242
(0.18246) (0.00801) (0.949) (0.952)

2 a 0.612112 0.737359 0.130072 0.062699
(0.02113) (0.00290) (0.945) (0.966)

b 0.737248 0.347622 0.305776 0.269518
(0.06012) (0.04897) 0.976 (0.992)

α 1.187781 0.972113 0.140077 0.077979
(0.07189) (0.00532) (0.967) (0.973)

3 a 0.751516 0.773339 0.126231 0.066446
(0.00429) (0.00300) (0.956) (0.973)

b 0.744431 0.500450 0.314939 0.307502
(0.07209) (0.02636) (0.991) (0.988)

α 1.094196 0.949368 0.123959 0.062630
(0.02903) (0.00301) (0.974) (0.982)



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 379

Table 5. Average estimates with MSEs (in parenthesis) and average interval lengths with coverage
probabilities (in parenthesis) for multiple ramp-stress ALT (d = 4).

Point estimate interval length

ni mi CS θ MLE Bayes ACI HPD

ni =

⎧⎪⎨
⎪⎩
10, i = 1
10, i = 2
10, i = 3
5, i = 4

mi =

⎧⎪⎨
⎪⎩
8, i = 1
7, i = 2
7, i = 3
3, i = 4

1 a 0.610431 0.740282 0.130383 0.056286
(0.02675) (0.00265) (0.951) (0.966)

b 0.725977 0.230053 0.500096 0.423988
(0.06840) (0.12608) (0.969) (0.987)

α 1.240787 0.967178 0.122972 0.050850
(0.20276) (0.00280) (0.954) (0.971)

2 a 0.636283 0.735512 0.135427 0.061978
(0.02447) (0.00485) (0.966) (0.982)

b 0.743451 0.309270 0.503084 0.471396
(0.06746) (0.12842) (0.963) (0.957)

α 1.222220 0.957003 0.123959 0.054703
(0.11374) (0.00292) 0.933 0.950

3 a 0.792861 0.763362 0.166689 0.101501
(0.02155) (0.00533) (0.942) (0.937)

b 0.720829 0.380858 0.532976 0.565468
(0.07104) (0.10967) (0.964) (0.955)

α 1.068871 0.945560 0.122728 0.049741
(0.04151) (0.00181) (0.931) (0.943)

ni =

⎧⎪⎨
⎪⎩
15, i = 1
13, i = 2
12, i = 3
10, i = 4

mi =

⎧⎪⎨
⎪⎩
13, i = 1
10, i = 2
10, i = 3
8, i = 4

1 a 0.587099 0.734379 0.125612 0.059830
(0.03238) (0.00264) (0.953) (0.955)

b 0.822748 0.409939 0.335165 0.333577
(0.11406) (0.05495) (0.960) (0.973)

α 1.038893 0.974319 0.127987 0.071568
(0.04178) (0.00551) (0.954) (0.959)

2 a 0.585140 0.746663 0.123675 0.055150
(0.03162) (0.00234) (0.956) (0.966)

b 0.798213 0.327170 0.340084 0.313187
(0.09345) (0.06844) (0.963) (0.971)

α 1.021276 0.970991 0.125814 0.064987
(0.01795) (0.00422) (0.944) (0.952)

3 a 0.705557 0.768714 0.127049 0.065061
(0.00730) (0.00303) (0.918) (0.927)

b 0.786791 0.497537 0.3619241 0.369320
(0.08764) (0.04862) (0.943) (0.947)

α 1.018823 0.946112 0.123959 0.060926
(0.01773) (0.00295) (0.926) (0.939)

ni =

⎧⎪⎨
⎪⎩
15, i = 1
13, i = 2
12, i = 3
10, i = 4

mi =

⎧⎪⎨
⎪⎩
13, i = 1
10, i = 2
10, i = 3
8, i = 4

1 a 0.579791 0.718424 0.122967 0.056159
(0.03264) (0.00307) (0.954) (0.957)

b 0.754913 0.339442 0.311662 0.245782
(0.08514) (0.06166) (0.963) (0.960)

α 1.171164 0.987788 0.130850 0.063200
(0.12418) (0.00781) (0.964) (0.970)

2 a 0.616809 0.724489 0.126834 0.059665
(0.01911) (0.00273) (0.951) (0.963)

b 0.749321 0.371549 0.316667 0.291490
(0.06479) (0.04059) (0.972) (0.982)

α 1.131062 0.960194 0.133706 0.066742
(0.04310) (0.00342) (0.955) (0.963)

3 a 0.772081 0.776622 0.128714 0.067416
(0.00979) (0.00495) (0.954) (0.973)

b 0.728740 0.474201 0.337036 0.339555
(0.07209) (0.04654) (0.969) (0.955)

α 1.049155 0.949439 0.123959 0.060040
(0.02136) (0.00345) (0.957) (0.971)
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ACIs. We also observe that, in most of the cases, the coverage probabilities of HPD inter-
vals is higher than those of ACIs. Looking at the various results, it can be concluded that
the Bayes estimates show better result than the counterpart. Moreover, on comparing the
results for the simple ramp-stress and the two multiple ramp-stress ALT designs, it is diffi-
cult to choose a better one though simple ramp-stress ALT design performs better in many
cases.

8. Conclusion

In this article, a progressive-stress ALT is studied for Burr X distribution under pro-
gressively type-II censored data. Classical and Bayes estimates for model parameters are
obtained using the maximum likelihood method as well as MCMC method. Further, the
asymptotic confidence intervals are constructed and HPD intervals are also constructed
using the posterior samples obtained by Metropolis–Hastings algorithm. A numerical
example is studied for illustrating the proposed methods. A simulation study is also per-
formed. In the simulation study, theMLEs andBayes estimates are compared by the average
estimates andMSEs. The asymptotic confidence intervals andHPD intervals are compared
in terms of their average interval lengths and the coverage probabilities. The simulation
results show that the Bayes estimates and HPD intervals perform better than the classical
point estimates and confidence intervals.
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